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Abstract—The problem of combined free and forced (mixed) convection about inclined surfaces (or

wedges) in a saturated porous medium is analyzed

on the basis of boundary-layer approximations.

Similarity solutions are obtained for the special case where the free stream velocity and wall temperature

distribution of the inclined surface vary according to
and opposing flows are considered. It is found that

the same power function of distance. Both aiding
the parameter governing mixed convection from

inclined surfaces in porous media is Gr/Re. Numerical solutions are obtained for mixed convection from

an isothermal vertical flat plate as well as an inclined plate with constant heat flux, having an inclined

angle of 45°. Temperature and velocity profiles for these two cases at different values of Gr/Re are

presented. For aiding flows the heat-transfer rate is shown to be asymptotically approaching the forced

or free convection values as the value of Gr/Re approaches the limits of zero and infinity. The criteria
for pure and mixed convection from inclined surfaces in porous media are established.

NOMENCLATURE

A, constant defined in equation (6b);

B, constant defined in equation (9);

C, specific heat of the convective fluid;

£ dimensionless stream function defined by
equation (15);

Gr,  local Grashof number,
Gr= ngl !Tw" Tm IBKX/VZ;

g, acceleration due to gravity;

dx gy, gravitational acceleration in x and y
directions;

h, local heat-transfer coefficient;

K, permeability of the porous medium;

k, thermal conductivity of the saturated porous
medium;

m, angle parameter, m = 2n/(n+1);

n, constant defined in equation (9);

Nu,  local Nusselt number, Nu = hx/k;

p, pressure;

Pr, Prandtl number, Pr = v/u;

q, local heat-transfer rate;

Ra, modified local Rayleigh number,
Ra= P ngIﬂKlTw_ Tuo IX/H(X;

Re,  local Reynolds number, Re = U, x/v;

T, temperature;

U, free stream velocity in x-direction;

u, Darcy’s velocity in x-direction;

v, Darcy’s velocity in y-direction;

X, coordinate along the inclined impermeable
surface;

Y, coordinate perpendicular to the inclined
impermeable surface;

z, coordinate parallel to the gravitational
acceleration.
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Greek symbols

o, equivalent thermal diffusivity;

B, coefficient of thermal expansion;

or, thermal boundary-layer thickness;

n, dimensionless similarity variable defined in
equation (14);

nr,  value of n at the edge of the thermal
boundary layer;

0, dimensionless temperature defined by
equation (16);

A constant defined in equation (6b);

U, viscosity of convective fluid;

v, kinematic viscosity of the convective fluid;

0, density of convective fluid;

b, velocity potential;

v, stream function,

Subscript
o0, condition at infinity;
w, condition at the wall.

INTRODUCTION

DURING the past decade much work has been done on
the study of combined free and forced (mixed) convec-
tion boundary-layer flow about inclined surfaces im-
mersed in a viscous fluid. For the wedge configuration,
similarity solutions are obtained by Sparrow ez al. [1]
for the special case where the wall temperature and
the wedge angle are varying according to a particular
manner. A series solution, valid for arbitrary values of
wedge angle and wall temperature distribution, is later
obtained by Gunness and Gebhart [2]. For the problem
of mixed convection from a vertical flat plate where
similarity solutions are not possible, solutions have
been obtained based on the integral method [3], per-



808

turbation method {4-6], local similarity method [7],
and numerical method [8].

The corresponding problem of mixed convection in
a porous medium has important applications in
geothermal reservoirs where pressure gradients are
generated as a result of withdrawal or reinjection of
geothermal fluids. It appears that the first paper on the
study of combined free and forced convection in a
porous medium is due to Combarnous and Bia [9]
who had studied the effect of mean flow on the onset
of stability in a porous medium bounded by two iso-
thermal parallel plates. Numerical solutions are later
obtained by Horne and O’Sullivan [10], Cheng and
Lau [11], and Cheng and Teckchandani [12] to study
the effects of withdrawal of fluids in a hot-water
geothermal reservoir. Most recently, Schrock and Laird
[13] have performed an experimental study on the
simultaneous withdrawal and injection of fluids in a
porous medium.

In this paper we shall study the combined free and
forced convection boundary-layer flow along inclined
surfaces embedded in porous media. It is found that
similarity solutions exist when both the wall tem-
perature distribution of the plate and the velocity
parallel to the plate outside the boundary layer vary
according to the same power function of distance,
ie. x* The value of Gr/Re is found to be the con-
trolling parameter for the mixed convection from
inclined plates in a porous medium. Numerical solu-
tions are obtained for mixed convection from an iso-
thermal vertical flat plate (ie. 2= 0) as well as an
inclined plate with constant heat flux, having an in-
clined angle of 45° (i.e. 4 = 1/3). The criteria for pure
and mixed convection from inclined surfaces in a
porous medium are established.

ANALYSIS
Consider the problem of combined free and forced
convection about a wedge with an included angle mn
(or a plate inclined at an angle mn/2 with respect to

(c) (d)
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the horizontal direction) in a porous mediam as shown
in Fig. 1, where x and y are the Cartesian coordinates
in the direction along and perpendicular to the inclined
surface under consideration. In the mathematical for-
mulation of the problem, we shall assume that (ij the
convective fluid and the porous medium are cvery-
where in local thermodynamic equilibrium, (i1) the tem-
perature of the fluid is everywhere below boiling point.
(iii) properties of the fluid and the porous medium are
homogeneous and isotropic, and {iv) the Bousinesg
approximation is invoked. Under these assumptions,
the governing equations for the problem are

and
p=p.[1=pT~-T,], {5

where the “+ 7 signs in equations (2) and (3} are for
the coordinate systems shown in Figs. 1{(a) and (b)
while the “—" signs are for those shown in Figs. 1{c)
and (d); u, v, g, = gcosmn/2 and g, = gsinmn/2 are
the components of velocity and gravitational acceler-
ation vectors along the x and v directions; p. T, p, u.
and p are the density, temperature, pressure, viscosity.
and the thermal expansion coefficient of the fluid; K is
the permeability of the saturated porous medium:
a = kf(p,, C)y is the equivalent thermal diffusivity with
k denoting the thermal conductivity of the saturated
porous medium and (p,, C), the product of the density
and specific heat of the fluid. The subscript “oc” in
equation (5) denotes the condition at infinity.
The boundary conditions for the problem are

y=0, v=0,

yooo, u=U,.

T,=T,+Ax".
T=T,.

{6a, b)
{(7a.b)

where 4 > 0. We will designate as aiding flows when
the buoyancy force has a component in the direction
of free stream velocity, ie. T, = T, +Ax* in Figs.
I(a) and (b), or T,, = T, — Ax* in Figs. 1(c) and {d).
On the other hand, we will designate as opposing
flows when the buoyancy force has a component
opposite to the free stream velocity such as the case
with T,y = T,, — Ax*in Figs. 1(a)and (b) or T\, = T, -+
Ax* in Figs. 1(c) and (d).

Analogous to the classical boundary-layer theory, we
shall separate the saturated porous medium into two
regions: (i) the boundary-layer region (or inner region)
adjacent to the inclined surface where density gradient
of the fluid exists and convection takes place, and (i1}
the region away from the inclined surface (or the outer
region) where density of the fluid can be considered



Combined free and forced boundary layer flows about inclined surfaces in a porous medium

to be constant. Thus, for the outer region, we can

rewrite equations (2) and (3) as
o o
= d N 8
u i and v 3 (8)

with ¢ = (K/u)(p+ pgz) denoting the velocity potential
where z is the coordinate in parallel with the gravi-
tational acceleration vector and therefore 0z/0x =
cosmn/2 and 9z/0y = sinmmn/2. Substituting equation
{8) into equation (1), we have

Vi$ =0,

which is the Laplace equation. From potential theory,
we known that the velocity in the x-direction along
the inclined surface for the coordinate shown in Fig, 1
is given by

U, = Bx", 9

where B > 0 and n and m are related by m = 2n/(n+1)
or n = mf(2—m).

We now turn our attention to the region adjacent
to the inclined surface where density gradient of the
fluid exists (i.c. the inner region). If we introduce the
stream function such that u = dy/dy and v = — 0yr/0x,
the governing equations (1)}—(5) in terms of y and T are

oy 0 pupK[ OT 4T
a5 = x AT T Yy A | 10
ox? * ay* * 7 g dy 95 (10

and
2
T &°T 1(@:{;5?’ 81{167‘), (an

ox* | 9yr a\dy ox

where the “+ 7 sign is for Figs. 1(a) and (b) while the
“—"sign is for Figs. 1{c) and (d). If convection takes
place in a thin layer such that 6/0x « 8/0y, it follows
that (i) the first terms on the LHS of equations (10}
and (11) are small in comparison to their second terms,
and (ii) the second term on the RHS of equation (10}
is small in comparison with the first term provided
that g, and g, are of the same order of magnitude.
The latter approximation is valid for a wide range of
inclined angles except for m = 0 in Figs. 1{a) and (¢}
or m=1 in Figs. 1(b) and (d), ie. for horizontal
boundary layers where g, = 0. With boundary-layer
approximations, equations (10} and {11} are given by

2
and
AT 1(ey T oy éT
577(“5;5‘5;’@7)’ 13

where the “ 4+ and “— " signs correspond to the upper
and lower figures in Fig. 1. It should be noted that the
boundary condition for the velocity in the x-direction
at the edge of the boundary layer must be matched
with the velocity given by equation (9).

To seek similarity solutions for equations (12) and
(13) with boundary conditions (6), (7), and (9), we
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introduce the following dimensionless similarity vari-

ables
2
"= (U“”‘)l/ v (14
o p
¥ = U x)2 ), (19)
T—T,
o) = (16

In terms of the new variables, it is easy to show that
the velocity components are given by

u= Uy f'(n),

12
U%(ﬁ%) [(L—mnf —(+nf], (18

(17)

and the governing equations (12) and (13) become

fr= i»—wig"tiAK” X260, (19)
1
0" = 20" -w—;” 19, (20)

where the primes in the equations are the differ-
entiation with respect to n and the positive and negative
signs in equation (19) denotes aiding and opposing
flows respectively.

In terms of new variables, boundary conditions for
equations (19) and (20) are

7=0, f=0, 6=1, (21a,b)
6=0. (22a,b)

It is apparent that equations (19)-(22) will be in-
dependent of x if n= 1 in equation (19). Under this
restricted condition, equations (19) and (20) become

g—owo, f=1,

Gr
(Tl 9/’ 23
f"=% Re 23
144
0" = 261" --;'— 19, (24)

where

Gr _ |9:||T,— T, | BKx/v? _ lg:l4BK
Re Uyex/y By

which is the ratio of the modified Grashof number
and the Reynolds number.

With the aid of equation (22), equation {23) can be
integrated once to give

, Gr
==+ Re 0+1.

Equations (24) and (25) with equations (21) and (22)
are the governing equations and boundary conditions
for the problem of combined free and forced convec-
tion about a plate inclined with the horizontal direction
at an angle mn/2 [where m # 0 in Figs. 1{a) and {0,
and m # 1 in Figs. 1(b) and (d)] with a wall tempera-
ture distribution given by T,, = T, + Ax*, embedded in
a porous medium with free stream velocity given by
U, = Bx* where m = 24/(1+ ).

The quantity Gr/Re in equation (25) is a measure
of relative importance of free to forced convection, and

(25
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is the controlling parameter for the present problem.
Let us now examine the limiting case of Gr/Re -0,
ie. forced convection about an inclined plate with
Tw= T, + Ax* and U, = Bx". For the special case of
Gr/Re = 0, equations (19)—(20) show that similarity
solutions are possible for arbitrary values of 2 and s.
For this limiting case, equation (19} can be integrated
to give
=1 and f=up, (26a.b)
where we have made use of boundary conditions (22a)
and (21a). Substituting equations (26) into equations
(15), (17), and (18), we have
y=U, y=Bx"y, 27
u=1U, =Bx" ve= —nBx" 'y, (28ab)
which give the flow field near the inclined plate.
Similarly, the substitution of equations (26) into
equation (20) yields

1+n

0" =20 —-——nt, (29)

which, with boundary conditi:)ns (21b) and (22b), can
be integrated numerically.

RESULTS AND DISCUSSION

Equations (24) and (25) with boundary conditions
(21) and (22a) can be integrated numerically by the
Runge-Kutta method with a systematic guessing of
#(0) by the shooting technique. Integration has been
carried out for the following two cases: (a) A=n =0
which corresponds to mixed convection from an iso-
thermal vertical flat plate and (b) 4 = n = 1/3 which
corresponds to mixed convection from a flat plate
with constant heat flux having an inclined angle of 45°.
Results for 6{n) and f'(y) for both aiding and opposing
flows are shown in Figs. 2 and 3.

The results of greatest practical interest in a geo-
thermal application are the thermal boundary layer
thickness and the heat-transfer rate. Consider first the
expression for the local surface heat flux along the
inclined surface which can be computed from

A S 12
g = _k(f;’-) :kA(-‘?-) K20yl (30)
¥v=0

ey /y o
where the values of [ —6'(0)] as a function of Gr/Re
for aiding and opposing flows are tabulated in Tables
I and 2 respectively. Equation (30) shows that surface
heat flux is constant for 2= 1/3. Equating equation
(30) to the definition of h, ie. ¢ = WT,—T,) and
rearranging, we have
Nu

(Reprz = L7000

where Nu = hx/k and Pr = v/o. Equation (31) for aiding
flows with A =0 and 4 = 1/3 is plotted in Fig. 4 as a
function of Gr/Re. It will be of interest to plot the
corresponding expressions for pure free and pure
forced convection in the same figure. For this purpose
let us consider the case of forced convection where
Gr/Re = 0. From Table I, we have

N oseat (1=0)

(31

32)

=1/
(Repryi™ (= 1/3)
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(B} A=1/3
e Aiding Flows
-~ = Opposing Flows

oatiR

F16. 2. Dimensionless temperature vs # for aiding and
opposing flows (a) /. = 0 and (b} 4 = 1/3.

Table 1. Values of —#{0) and 5 for aiding flows

A=0 A= 13
Gr/Re ~010) . —0(0) .
O 0.5641 36 0.8540 29
0.5 0.6473 33 0.9816 27
1.0 0.7205 3 1.093 25
30 0.9574 2.5 1.456 2.1
10.0 1.516 1.7 231 4
20.0 2.066 1.3 3182 i
Table 2. Values of —#{0) and 5y for opposing flows
A=0 £ 173
Gr/Re -0 Hr - ('(0) W
0.2 0.5269 38 0.7970 3.0
04 0.4865 39 0.7351 iz
06 (.4420 42 0.6671 i3
0.8 0.3916 4.5 (.5903 38
1.0 0.3320 4.9 38

0.4999
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Gr /Re
F1a. 4. Heat-transfer results for aiding flows,
which can also be obtained alternatively from the  which ¢an be rewritten as
integration of equation (29) with # = A, From the work . i
of C}lﬁ‘ng and Minkowycz [f.4], we have the following Nu — ()444(_9—_{) - =0 (34)
gxpressions for free convection about an inclined plate (Re Pry*? Re/ ~ -
in a porous medium Nu G
————— =04440 (A=0), ‘
( Ra)ld ( ) (33)
and N where we have used the relation Ra = GrPr. Equations
E}tﬁﬁ =06788 (4= 1/3) (32) and (34) are plotted as the forced and free con-
)

vection asymptotes in Fig, 4. It is shown that the curves
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of Nu/(RePr)"* for aiding flows lies above the asymp-
totes and that the maximum deviation from the
asymptotes is 25-30% which occurs near Gr/Re = 1.6.
The criteria for pure or mixed convection in a porous
medium can be established if we follow the 5% devi-
ation rule suggested by Sparrow et al. [1]. If this rule
is applied to the local heat-transfer rate for aiding flows
shown in Fig. 4, we have the following subdivisions

0 < Gr/Re < 0.15 forced convection,  (35a)
0.15 <« Gr/iRe < 16 mixed flow, {35b)
16 < GriRe free convection. {35c)
14
L o e Opposing Flows
ost "0
lf 04t
b4
03
: -~ Forced Convection Asymptote
=z
02
o Vo6 52 o3 0405 10

Gr /Re
F16. 5. Heat-transfer results for opposing flows.

The values of Nu/(RePr)!”* vs Gr/Re for opposing
flows are plotted in Fig. 5 which shows that at small
values of Gr/Re the curve approaches the forced con-
vection asymptote. If the 5%, deviation rule is again
applied for opposing flows, it is found that equation
(35a) is still valid but with equation (35b) reptaced by

0.15 < Gr/Re. (36)

The total surface heat-transfer rate for a flat plate
with a length L and a width of § can be computed

from
M~

g= S} g{x)dx, (37

O

which, after the substitution of equation (30) gives
A / 1/2 . ,
Q == .12.515_, (E) ["(‘7'(0)}14(3"“"@.
2

Consider next the expression for thermal boundary-
tayer thickness. If 5y is the value of # at which 6(n)
has a value of 0.01, we have, from equation (14)

Oy

(38)

(39)

X

where the values of 5y are tabulated in Tables { and 2
for aiding and opposing flows. It will be of interest to
show the values of (Re Pr)!/*d,/x in the free and forced
convection limits. This is done in Fig. 6 for aiding flow
where the free convection asymptotes are given by
Cheng and Mikowycz [ 14]

6.31
128 iy (5= 0), 40
{RePr* 28 p/x GriRe) {+=10) (40
5.50 .
(RePHPoy/x = =020 (=131 (A1)

(Gr/Re)'”?

PING CHENG

s v e — Free Convechion Asymplote

-.—-— Forced Convection Asymptofe

i
ot b itk povid

.
Gl 02 030405 10 2 345 i0
Gr / Re

20 4050

FiG. 6. Dimensionless boundary-layer thickness paramcter
for aiding flows.

To gain some feeling on the order of magnitude of
various physical quantities in a geothermal application.
consider a heated isothermal impermeable vertical
surface, ! x1km, embedded in an aquifer where a
pressure gradient exists. If the temperature of the im-
permeable surface and the aquifer are at 215 and 13 C
respectively and the pressure gradient is such that
causes the groundwater moving upward vertically. the
heat-transfer rate and the size of the hot water zone
can be determined from Figs. 4 and 6. For numerical
calculations, the following values of physical propertics
are used: B = L8 x107*°C, p, = 10°g/m®, (= foni
g°C, p=027g/sm, k,=058cal;s"Cm, and K
107> m?. The results of the computations for (.,
varying from 0.01 em/h to 10 cm/h are plotted i Figs.
7 and 8 where it is shown that the total heart transfer
rate increases from 20 to 120 MW while the boundary-
layer thickness at 1 km decreases from 130 to 20m.

1000
- K = 152l
= £ =108 g/m3
50Q¢r i ~
2_ 400+ B 1.8x00™%°C
g 300k p=0279/s.m
@ o 631077 mis
5 207 1,-Te - 200%
H Areg = 1000 m x1000m
s e
2 00E- y‘/,
= - ~—e--- Free convection asymptote o :
- e - —— Forced convection asymptote L
3 soh e
T a0k o
g - g
€ 20 e T T T T D D © o e
ol N I TS -
G0 002003005 0QIC 6.2 030405 G Ponan E
Uep em/h
Fia. 7, Effects of U, on total heat-transfer rate ¢ = 04
000
Zg‘é 2 = i8x107her
£ 300+ & = 027g/5.m :
r a = 8.3x107m?s :
g 200} T~ Tw = 200°C
O b e e e H
8 =5 H
T 0op- B -
3 - !
-~ . i
w 50+ H
- 40t ;
A0
sob "7 Free convection gsympiota

e - ——a Foreed convection gsympiole

i
fg ot ogpdtf bewdd L ERE '

0.2 0304050 P R

IC 5
D01 002003 005 OIQ

Ue cm/h

Fic. & Bffects of U, on boundary-tuver thickness (21 =
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CONCLUDING REMARKS

The foregoing analysis is based on the boundary-
layer approximations and neglecting the component of
buoyancy force normal to the inclined surface. The
latter assumption will break down when the inclined
surface becomes horizontal. Thus, the analysis for mix
convection about horizontal impermeable surfaces in
a porous medium must be treated separately [15].
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ECOULEMENTS MIXTES A COUCHE LIMITE LE LONG D’'UNE
SURFACE INCLINEE DANS UN MILIEU POREUX

Résumé—On analyse & partir des approximations de la couche limite le probléme de la convection mixte
sur des surfaces inclinées (diédres) dans un milieu poreux saturé. Des solutions affines sont obtenues
dans le cas particulier ou la vitesse de 'écoulement libre et la distribution de température pariétale
varient selon la méme fonction puissance de la distance. On considére les écoulements favorables et
défavorables. Le paramétre Gr/Re gouverne la convection mixte autour des surfaces inclinées. Des
solutions numeériques sont obtenues pour une plaque plane verticale isotherme et pour une plaque
inclinée a flux constant avec un angle d’inclinaison égal a 45°. On donne les profils de température et
de vitesse dans ces deux cas pour différentes valeurs de Gr/Re. Pour les écoulements favorables le transfert
thermique approche les valeurs asymptotiques des convections forcées et naturelle lorsque Gr/Re
approche les limites nulle et infinie. Les critéres de la convection pure ou mixte autour des surfaces
inclinées dans les milieux poreux sont précisés.

KOMBINIERTE FREIE UND ERZWUNGENE GRENZSCHICHTSTROMUNGEN
AN GENEIGTEN OBERFLACHEN IN EINEM POROSEN MEDIUM

Zusammenfassung—Das Problem der kombinierten freien und erzwungenen Konvektion an geneigten
Oberflichen (oder an keilférmigen Korpern) in einem gesattigten, pordsen Medium wird anhand von
Niherungslésungen der Grenzschichtgleichungen untersucht. Ahnlichkeitslosungen ergeben sich fiir den
speziellen Fall, daB Geschwindigkeits- und Temperaturverteilung liber der geneigten Oberfliche demselben
Potenzgesetz gehorchen. Es werden Stromungen in Richtung des Auftriebs sowie entgegen dem Auftrieb
betrachtet. Als beherrschender Parameter fiir die gemischte Konvektion an geneigten Oberflichen ergab
sich der Quotient Gr/Re. Fiir die gemischte Konvektion an einer isothermen, vertikalen ebenen Platte
sowie an einer um 45° geneigten Platte bei konstanter Wirmestromdichte werden numerische Losungen
sowie die Temperatur- und Geschwindigkeitsprofile fiir verschiedene Werte von Gr/Re angegeben. Bei
Strémungen in Auftriebsrichtung nahert sich der Wirmetibergangskoeffizient asymptotisch den Werten
bei erzwungener (Gr/Re — 0) bzw. freier Konvektion (Gr/Re — o). Fiir die reine und gemischte Kon-
vektion an geneigten Oberflichen in pordsen Medien werden Kriterien aufgestellt.
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TEYEHUE B IIOT'PAHUYHOM CJIOE HA HAKJ’IQHHOVI HNOBEPXHOCTU
B TTOPUCTOM CPEOE NPU COBMECTHOW CBOBOAHON U
BBIHYXXAEHHO KOHBEKLIMU

AnHoTanmpa — B npuGIMXeHHH OOrpaHMYHOTO CJIOsi aHAJM3HPYETCs COBMeCTHas cBoOOnHAas H
BEIHYX/ICHHAs (CMEILaHHasA) KOHBEKLMS Ha HAKJIOHHOM ITOBEPXHOCTH (MITH KIMHBSAX) B HACBLILUEHHOM
mopHucToit cpene. TlosydeHbl aBTOMOAENbHbBIE PEIIEHUs Ul Cllyyasi, KOTAa CKOpOCTh Haberaloulero
TNOTOKA H TEMIIEPATYPA CTEHKH HAKJIOHHOM MOBEPXHOCTH M3MEHAFOTCS 110 OJIHON U TOIf Ke CTENeHHOM
yuKuME paccTOsHHA. PacCMOTpeHbl Ciiy4ay COyTHOro u obparHoro TeueHus. HaiineHo, 4ro or-
HowreHue Gr/Re sBIfAeTCA NAPAMETPOM, ONPEACIIAIOIIUMM NPOLECC CMELIAHHOW KOHBEKUMH Ha HaKJIOH-
HOM TIOBEPXHOCTH B ITOPHCTOIM cpeae. [ToryyueHbl YUCICHHbIE PEILICHHs 1S CMEILIalHOH KOHBEKLMU OT
H30TEPMHUYECKOMN IIIOCKOH ITAaCTHHBI, a TAKXKe ILTACTHHBI, HAKJOHEHHOH 101 YI10M 457, TIpH IOCTORH-
HOM TemnoBOM noToke. JIJIst 3THX ABYX CIy4aeB NPHUBEJEHBI MTPOQHIN TEMIIEPaTyphl H CKOPOCTH s
pas3nHYHBIX 3HAYEHHH OTHOLIEHHs Gr/Re. [Toka3zaHo, YTO [UIf CMYTHOTO TEYEHHA CKOPOCTb TEMR006-
MeHa aCHMIITOTHYECKH NMPHOIMKACTCA K 3HAYEHHAM, XapAKTEPHLIM I BLIHYXKIEHHOH MU CBOOOI-
HO# KOHBEKLIHH, IO MEpE TOro, kak oTHouweHue Gr/Re CTPEMHTCS K HyNIO H/IH OECKOHEYHOCTH.
VCTaHOBIEHB! KPHTEPHH 1t CBOGOMHON M CMELIaHHON KOHBEKLMH Ha HAKJOHHBIX NMOBEPXHOCTSX &
MOPHCTBIX Cpeaax.



